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cut out of the rolling plane. A more quantitative check 
on the theory is difficult because not enough is known 
about the coefficients KLF and Ksc. As discussed by 
Chikazumi et al., parameters such as po and p' are not 
very accessible to experimentation as they depend 
sensitively on the details of dislocation motion. In 
addition, the order parameters sand u are expected to 
decrease with increasing deformation,u.25 so that the 
integrated forms of Eqs. (2) and (3) may be required. 
Attempt at a quantitative study was made by CSI, but 
the results were inconclusive for the above reasons. 

Regarding the effect of long- and short-range-order 
on the slip-induced anisotropy, cases (1), (4), (S), and 
(7) for rolling in Table II are of interest, since different 
directions of the easy axis are predicted depending on 
the type of order. At compositions close to 7S% Ni, 
appropriate heat treatments may be used to bring 
about mainly one type of ordering. Or, short-range 
order may be achieved at the expense of long range by 
choosing the composition well away from the 7S% i 
region. While the kinetics of long-range ordering is 
sluggish, short-range order appears unavoidable over 
a range of the Fe-Ni composition.26 Although the above 
analyses were made for 7S% Ni-2S% Fe only, a change 
in composition would affect the number of induced atom 
pairs (hence KLF and Ksc) but not their directions. 
Consequently the predicted positions of the easy 
directions outlined in Table II would still be applicable. 

It is assumed in the present analysis that the choice 
of the operating slip systems is made on the basis of 
satisfying the macroscopic stress and strain conditions. 
Wire drawing has been considered as tension along the 
wire aJ..'is and rolling as a triaxial stress system with the 
symmetry directions as principal stress axes. In the two 
cases ((110) [112J and (112) [110J) where the operating 
slip systems based on stress consideration do not satisfy 
strain compatibility, alternative analyses were made to 
provide for additional slip systems. 

It is fmlher assumed in the present analysis that all 
operating slip systems operate homogeneously through­
out the sample. If certain systems exclude one ancther, 
for reasons such as unequal hardening and change in 
stress due to lattice reorientation dming deformation, 
the resulting anisotropies may be different from those 
of Table II. In the CSI study, for example, systems 
(1), (2), (4), and (S) are predicted in (001) [110J 
rolling. Slip-line observations, however, show that 
systems (1) and (2) operate on the top side of the 
crystal and (4) and (S) on the bottom. Hence in­
homogeneity of deformation may have to be considered 
in individual cases. 

Aside from the above considerations, Table II pre­
sents several interesting conclusions. During wire 
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drawing, for example, the wire axis becomes magneti­
cally hard or easy depending on whether the orientation 
is (001) or (111 ). As for plane strain deformation, 
usually realized in rolling, most of the orientations 
predict the rolling direction as the induced easy axis, 
notable exceptions being (001) [100J and (110) [001]. 
The case of (110) [112J rolling is also interesting since 
it predicts an easy axis other than the rolling or trans­
verse direction, hence the theory can be put to a severe 
test here. 

Table II also has implications for rolling poly­
crystalline materials. Since all the orientations de­
scribed are symmetrical orientations (with respect to 
rolling), an initially randomly oriented grain probably 
rotates to one of these orientations after a small 
deformation. A majority of these orientations place the 
easy axis along the rolling direction; which may explain 
the observation that the rolling direction is the easy 
axis for an initially random polycrystalline aggregate of 
Permalloy.2 In this connection, it is interesting to note 
that the rolling direction continues to be the easy axis 
at 90% thickness reduction or more where the textme 
is no longer random. The rolled texture in face-centered 
cubic Fe-Ni alloys can be described as (112) [111J plus 
(110) [112J, the former component being the larger.2 

Table II reveals that rolling of a (112) [111J crystal 
results in an easy axis along the rolling direction. As for 
the (110) [112J texture, it actually consists of two 
symmetrical components, which may be written as 
(110) [112J+ (110) [112]. Hence the anisotropy listed 
in Table II for (110) [112J should be superposed onto 
that for (110) [112]. When this is done, the effective 
easy axis is again most likely along the rolling direction. 

Finally it should be noted that plane strain conditions 
can be approximated by processes other than rolling. 
Two cases of technological importance are wire flatten­
ing by rolling and flat-drawing. These two methods are 
employed in the fabrication of thin magnetic tapes of 
narrow width for memory applications. During ro11-
flattening, the material flows laterally without much 
elongation. The flat-drawing process, on the other hand, 
results in axial elongation without much change in the 
lateral direction. Such processing techniques, as pre­
liminary studies have shown,27 are expected to produce 
unusual textmes and magnetic anisotropies. The 
results of the experimental studies involving rolling and 
wire drawing of single crystals to test the theoretical 
analyses presented here as well as the results of flatten­
ing polycrystallil1e wire materials will be presented in a 
subsequent paper. 
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APPENDIX 

Relation between Glide-Shear, Slip Density, 
and Macrostrain 

The "slip density" S, as defined in the CSI analysis, 
is the average or effective number of dislocations passed 
per atomic (slip) plane. The glide-shear due to slip can 
thus be expressed as 'Y=Sb/d, where b is the strength of 
the Burger's vector and d the slip plane spacing. For 
{111} (110) slip in face-centered cubic materials, 
b=a/Y2 and d=a/ YJ (a=lattice constant). Hence 

'Y=S(!) t. (A1) 

Now the glide shear is related to the macroscopic 
strain tensor components by the equations13 

Ell ' = ("1/ 2) (nji.+n.dy), 

Ezz = ("1/ 2) (n.dz+nxd.), 

Ezy= ("1/ 2) (nxdy+njiz), 

(A2) 

where n z , n il, n. are components along the cubic co­
ordinates of a unit vector normal to the slip plane and 
dz, dll , d. are the components of a unit vector along the 
slip direction. As an example, take slip on the (111) 
[OilJ system [ o. (1) in Table IJ, nz=nll=n.= l / YJ, 
dz= 0, dy= -1/ Y2, dz= 1/ Y2. From Eqs. (A2), we get 

Eyy = - ("1/ --/6), 

E •• ='Y/ --/6, 

Eyz =O, 

Ezz = ("1/2). (1/ --/6), 

Ezy = - ("1/ 2)(1/ --/6). 

Finally, by converting "I to S via Eq. (Al), 

Elly = - (Sl/2), 

E •• = (St!2), 

Ey. =O, 

Ezz=St!4, 

EzlI = - (St!4), 

which are the values entered in Table r. 

(A3) 

(A4) 


